
Longest Processing Time rule for identical

parallel machines scheduling revisited

Federico Della Croce1,2 Rosario Scatamacchia 1

1DIGEP - Politecnico di Torino, Torino, Italy

2CNR, IEIIT, Torino, Italy

GOThA et Bermudes - Tours, 26-27 septembre 2017



Outline

1 Introduction

2 LPT rule

3 LPT revisited

4 Improving the LPT bound

5 From approximation to heuristics

6 Computational testing



Introduction

• We consider problem Pm||Cmax where the goal is to schedule n jobs on m
identical parallel machines Mi (i = 1, . . . ,m) minimizing the makespan.

 
 

 
 
 
 
 
 
 
 
 
 
 
 

              blue and grey jobs start processing before j 
 
 
 
 
 
 
 
 
 
 
 

 

machine Mi j 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

0 
 

 time 

 

Figure:



Introduction

• We consider problem Pm||Cmax where the goal is to schedule n jobs on m
identical parallel machines Mi (i = 1, . . . ,m) minimizing the makespan.

• For this NP-hard problem, we revisit the famous Longest Processing
Time (LPT ) rule proposed by Graham - 1969.

• We employ Linear Programming to analyze the worst case performance of
a simple modification of LPT that manages to improve the longstanding
Graham’s bound (from 4

3 −
1

3m to 4
3 −

1
3(m−1) ) for m ≥ 3.

• Then, we move from approximation to heuristics. By generalizing the
proposed approach we obtain a simple O(n log n) procedure that
drastically improves upon the performances of the LPT rule.

• On 780 benchmark literature instances (Iori and Martello 2008), the new
procedure wins 513 times, ties 224 times and loses 43 times against LPT .



Introduction

• We consider problem Pm||Cmax where the goal is to schedule n jobs on m
identical parallel machines Mi (i = 1, . . . ,m) minimizing the makespan.

• For this NP-hard problem, we revisit the famous Longest Processing
Time (LPT ) rule proposed by Graham - 1969.

• We employ Linear Programming to analyze the worst case performance of
a simple modification of LPT that manages to improve the longstanding
Graham’s bound (from 4

3 −
1

3m to 4
3 −

1
3(m−1) ) for m ≥ 3.

• Then, we move from approximation to heuristics. By generalizing the
proposed approach we obtain a simple O(n log n) procedure that
drastically improves upon the performances of the LPT rule.

• On 780 benchmark literature instances (Iori and Martello 2008), the new
procedure wins 513 times, ties 224 times and loses 43 times against LPT .



Introduction

• We consider problem Pm||Cmax where the goal is to schedule n jobs on m
identical parallel machines Mi (i = 1, . . . ,m) minimizing the makespan.

• For this NP-hard problem, we revisit the famous Longest Processing
Time (LPT ) rule proposed by Graham - 1969.

• We employ Linear Programming to analyze the worst case performance of
a simple modification of LPT that manages to improve the longstanding
Graham’s bound (from 4

3 −
1

3m to 4
3 −

1
3(m−1) ) for m ≥ 3.

• Then, we move from approximation to heuristics. By generalizing the
proposed approach we obtain a simple O(n log n) procedure that
drastically improves upon the performances of the LPT rule.

• On 780 benchmark literature instances (Iori and Martello 2008), the new
procedure wins 513 times, ties 224 times and loses 43 times against LPT .



Introduction

• We consider problem Pm||Cmax where the goal is to schedule n jobs on m
identical parallel machines Mi (i = 1, . . . ,m) minimizing the makespan.

• For this NP-hard problem, we revisit the famous Longest Processing
Time (LPT ) rule proposed by Graham - 1969.

• We employ Linear Programming to analyze the worst case performance of
a simple modification of LPT that manages to improve the longstanding
Graham’s bound (from 4

3 −
1

3m to 4
3 −

1
3(m−1) ) for m ≥ 3.

• Then, we move from approximation to heuristics. By generalizing the
proposed approach we obtain a simple O(n log n) procedure that
drastically improves upon the performances of the LPT rule.

• On 780 benchmark literature instances (Iori and Martello 2008), the new
procedure wins 513 times, ties 224 times and loses 43 times against LPT .



Introduction

• LPT rule: sort the jobs 1, ..., n in non-ascending order of their processing
times pj (j = 1, . . . , n) and then assign one job at a time to the machine
whose load is smallest so far.

• Assume the jobs sorted by non-increasing pj
(pj ≥ pj+1, j = 1, . . . , n− 1).

• Denote the solution values of the LPT schedule and the optimal
makespan by CLPT

m and C∗m respectively, where index m indicates the
number of machines.

• Denote by rk =
CLPT

m

C∗m
the approximation ratio of the LPT schedule with

k jobs assigned to the machine yielding the maximum completion time
(the critical machine)



Introduction

• LPT rule: sort the jobs 1, ..., n in non-ascending order of their processing
times pj (j = 1, . . . , n) and then assign one job at a time to the machine
whose load is smallest so far.

• Assume the jobs sorted by non-increasing pj
(pj ≥ pj+1, j = 1, . . . , n− 1).

• Denote the solution values of the LPT schedule and the optimal
makespan by CLPT

m and C∗m respectively, where index m indicates the
number of machines.

• Denote by rk =
CLPT

m

C∗m
the approximation ratio of the LPT schedule with

k jobs assigned to the machine yielding the maximum completion time
(the critical machine)



Introduction

• LPT rule: sort the jobs 1, ..., n in non-ascending order of their processing
times pj (j = 1, . . . , n) and then assign one job at a time to the machine
whose load is smallest so far.

• Assume the jobs sorted by non-increasing pj
(pj ≥ pj+1, j = 1, . . . , n− 1).

• Denote the solution values of the LPT schedule and the optimal
makespan by CLPT

m and C∗m respectively, where index m indicates the
number of machines.

• Denote by rk =
CLPT

m

C∗m
the approximation ratio of the LPT schedule with

k jobs assigned to the machine yielding the maximum completion time
(the critical machine)



Introduction

• LPT rule: sort the jobs 1, ..., n in non-ascending order of their processing
times pj (j = 1, . . . , n) and then assign one job at a time to the machine
whose load is smallest so far.

• Assume the jobs sorted by non-increasing pj
(pj ≥ pj+1, j = 1, . . . , n− 1).

• Denote the solution values of the LPT schedule and the optimal
makespan by CLPT

m and C∗m respectively, where index m indicates the
number of machines.

• Denote by rk =
CLPT

m

C∗m
the approximation ratio of the LPT schedule with

k jobs assigned to the machine yielding the maximum completion time
(the critical machine)



Pm||Cmax problem and LPT rule properties

• C∗m ≥ p1.

• C∗m ≥

n∑
j=1

pj

m .

• CLPT
m = C∗m if pj′ >

C∗m
3 (j′ denotes the critical job).

• CLPT
m ≤

j′∑
j=1

pj

m + pj′(1− 1
m ) ≤ C∗m + pj′(1− 1

m ) - [Graham 1969].

• For each job i assigned by LPT in position j on a machine:

pi ≤ C∗m
j - [Chen 1993].



Pm||Cmax problem and LPT rule properties

• C∗m ≥ p1.

• C∗m ≥

n∑
j=1

pj

m .

• CLPT
m = C∗m if pj′ >

C∗m
3 (j′ denotes the critical job).

• CLPT
m ≤

j′∑
j=1

pj

m + pj′(1− 1
m ) ≤ C∗m + pj′(1− 1

m ) - [Graham 1969].

• For each job i assigned by LPT in position j on a machine:

pi ≤ C∗m
j - [Chen 1993].



Pm||Cmax problem and LPT rule properties

• C∗m ≥ p1.

• C∗m ≥

n∑
j=1

pj

m .

• CLPT
m = C∗m if pj′ >

C∗m
3 (j′ denotes the critical job).

• CLPT
m ≤

j′∑
j=1

pj

m + pj′(1− 1
m ) ≤ C∗m + pj′(1− 1

m ) - [Graham 1969].

• For each job i assigned by LPT in position j on a machine:

pi ≤ C∗m
j - [Chen 1993].



Pm||Cmax problem and LPT rule properties

• C∗m ≥ p1.

• C∗m ≥

n∑
j=1

pj

m .

• CLPT
m = C∗m if pj′ >

C∗m
3 (j′ denotes the critical job).

• CLPT
m ≤

j′∑
j=1

pj

m + pj′(1− 1
m ) ≤ C∗m + pj′(1− 1

m ) - [Graham 1969].

• For each job i assigned by LPT in position j on a machine:

pi ≤ C∗m
j - [Chen 1993].



Pm||Cmax problem and LPT rule properties

• C∗m ≥ p1.

• C∗m ≥

n∑
j=1

pj

m .

• CLPT
m = C∗m if pj′ >

C∗m
3 (j′ denotes the critical job).

• CLPT
m ≤

j′∑
j=1

pj

m + pj′(1− 1
m ) ≤ C∗m + pj′(1− 1

m ) - [Graham 1969].

• For each job i assigned by LPT in position j on a machine:

pi ≤ C∗m
j - [Chen 1993].



LPT rule properties:

Known LPT approximation ratios.

• r1 = 1.

• r2 = 4
3 −

1
3(m−1) - [Chen 1993].

• rk = k+1
k −

1
km k ≥ 3 [Coffman and Sethi 1976 - Graham 1969 for k = 3].

Notice that

• r2 = 1 for m = 2;

• r2 = r4 for m = 3;

• r2 < r4 for m ≥ 4;

• rk < rk+1 for k ≥ 3

=⇒ Improving r3 improves LPT .
We concentrate then on instances where the critical job is in position 3.



LPT rule properties:

Known LPT approximation ratios.

• r1 = 1.

• r2 = 4
3 −

1
3(m−1) - [Chen 1993].

• rk = k+1
k −

1
km k ≥ 3 [Coffman and Sethi 1976 - Graham 1969 for k = 3].

Notice that

• r2 = 1 for m = 2;

• r2 = r4 for m = 3;

• r2 < r4 for m ≥ 4;

• rk < rk+1 for k ≥ 3

=⇒ Improving r3 improves LPT .
We concentrate then on instances where the critical job is in position 3.



LPT rule properties:

Known LPT approximation ratios.

• r1 = 1.

• r2 = 4
3 −

1
3(m−1) - [Chen 1993].

• rk = k+1
k −

1
km k ≥ 3 [Coffman and Sethi 1976 - Graham 1969 for k = 3].

Notice that

• r2 = 1 for m = 2;

• r2 = r4 for m = 3;

• r2 < r4 for m ≥ 4;

• rk < rk+1 for k ≥ 3

=⇒ Improving r3 improves LPT .
We concentrate then on instances where the critical job is in position 3.



LPT rule properties:

Known LPT approximation ratios.

• r1 = 1.

• r2 = 4
3 −

1
3(m−1) - [Chen 1993].

• rk = k+1
k −

1
km k ≥ 3 [Coffman and Sethi 1976 - Graham 1969 for k = 3].

Notice that

• r2 = 1 for m = 2;

• r2 = r4 for m = 3;

• r2 < r4 for m ≥ 4;

• rk < rk+1 for k ≥ 3

=⇒ Improving r3 improves LPT .
We concentrate then on instances where the critical job is in position 3.



LPT rule properties:

Known LPT approximation ratios.

• r1 = 1.

• r2 = 4
3 −

1
3(m−1) - [Chen 1993].

• rk = k+1
k −

1
km k ≥ 3 [Coffman and Sethi 1976 - Graham 1969 for k = 3].

Notice that

• r2 = 1 for m = 2;

• r2 = r4 for m = 3;

• r2 < r4 for m ≥ 4;

• rk < rk+1 for k ≥ 3

=⇒ Improving r3 improves LPT .
We concentrate then on instances where the critical job is in position 3.



Tight worst-case examples for LPT

• 2 machines - 5 jobs with jobs 1, 2 of length 3 and jobs 3, 4, 5 of length 2.

• C∗m=2 = 6, CLPT
m=2 = 7, r3 = 4

3 −
1

3m = 7
6 .

• 3 machines, 7 jobs with jobs 1, 2 of length 5, jobs 3, 4 of length 4 and jobs
5, 6, 7 of length 3.

• C∗m=3 = 9, CLPT
m=3 = 11, r3 = 4

3 −
1

3m = 11
9 .

• m machines, 2m+ 1 jobs with jobs 1, 2 of length 2m− 1, jobs 3, 4 of
length 2m− 2 ... jobs 2m− 1, 2m, 2m+ 1 of length m.

• C∗m = 3m, CLPT
m = 4m− 1, r3 = 4m−1

3m = 4
3 −

1
3m .

• Worst-case always occurs with 2m+ 1 = n jobs where the critical job is
job 2m+ 1 = n in position 3 and when C∗m =

∑n
i=1 pi/m.



Tight worst-case examples for LPT

• 2 machines - 5 jobs with jobs 1, 2 of length 3 and jobs 3, 4, 5 of length 2.

• C∗m=2 = 6, CLPT
m=2 = 7, r3 = 4

3 −
1

3m = 7
6 .

• 3 machines, 7 jobs with jobs 1, 2 of length 5, jobs 3, 4 of length 4 and jobs
5, 6, 7 of length 3.

• C∗m=3 = 9, CLPT
m=3 = 11, r3 = 4

3 −
1

3m = 11
9 .

• m machines, 2m+ 1 jobs with jobs 1, 2 of length 2m− 1, jobs 3, 4 of
length 2m− 2 ... jobs 2m− 1, 2m, 2m+ 1 of length m.

• C∗m = 3m, CLPT
m = 4m− 1, r3 = 4m−1

3m = 4
3 −

1
3m .

• Worst-case always occurs with 2m+ 1 = n jobs where the critical job is
job 2m+ 1 = n in position 3 and when C∗m =

∑n
i=1 pi/m.



Tight worst-case examples for LPT

• 2 machines - 5 jobs with jobs 1, 2 of length 3 and jobs 3, 4, 5 of length 2.

• C∗m=2 = 6, CLPT
m=2 = 7, r3 = 4

3 −
1

3m = 7
6 .

• 3 machines, 7 jobs with jobs 1, 2 of length 5, jobs 3, 4 of length 4 and jobs
5, 6, 7 of length 3.

• C∗m=3 = 9, CLPT
m=3 = 11, r3 = 4

3 −
1

3m = 11
9 .

• m machines, 2m+ 1 jobs with jobs 1, 2 of length 2m− 1, jobs 3, 4 of
length 2m− 2 ... jobs 2m− 1, 2m, 2m+ 1 of length m.

• C∗m = 3m, CLPT
m = 4m− 1, r3 = 4m−1

3m = 4
3 −

1
3m .

• Worst-case always occurs with 2m+ 1 = n jobs where the critical job is
job 2m+ 1 = n in position 3 and when C∗m =

∑n
i=1 pi/m.



Tight worst-case examples for LPT

• 2 machines - 5 jobs with jobs 1, 2 of length 3 and jobs 3, 4, 5 of length 2.

• C∗m=2 = 6, CLPT
m=2 = 7, r3 = 4

3 −
1

3m = 7
6 .

• 3 machines, 7 jobs with jobs 1, 2 of length 5, jobs 3, 4 of length 4 and jobs
5, 6, 7 of length 3.

• C∗m=3 = 9, CLPT
m=3 = 11, r3 = 4

3 −
1

3m = 11
9 .

• m machines, 2m+ 1 jobs with jobs 1, 2 of length 2m− 1, jobs 3, 4 of
length 2m− 2 ... jobs 2m− 1, 2m, 2m+ 1 of length m.

• C∗m = 3m, CLPT
m = 4m− 1, r3 = 4m−1

3m = 4
3 −

1
3m .

• Worst-case always occurs with 2m+ 1 = n jobs where the critical job is
job 2m+ 1 = n in position 3 and when C∗m =

∑n
i=1 pi/m.



Tight worst-case examples for LPT

• 2 machines - 5 jobs with jobs 1, 2 of length 3 and jobs 3, 4, 5 of length 2.

• C∗m=2 = 6, CLPT
m=2 = 7, r3 = 4

3 −
1

3m = 7
6 .

• 3 machines, 7 jobs with jobs 1, 2 of length 5, jobs 3, 4 of length 4 and jobs
5, 6, 7 of length 3.

• C∗m=3 = 9, CLPT
m=3 = 11, r3 = 4

3 −
1

3m = 11
9 .

• m machines, 2m+ 1 jobs with jobs 1, 2 of length 2m− 1, jobs 3, 4 of
length 2m− 2 ... jobs 2m− 1, 2m, 2m+ 1 of length m.

• C∗m = 3m, CLPT
m = 4m− 1, r3 = 4m−1

3m = 4
3 −

1
3m .

• Worst-case always occurs with 2m+ 1 = n jobs where the critical job is
job 2m+ 1 = n in position 3 and when C∗m =

∑n
i=1 pi/m.



Tight worst-case examples for LPT

• 2 machines - 5 jobs with jobs 1, 2 of length 3 and jobs 3, 4, 5 of length 2.

• C∗m=2 = 6, CLPT
m=2 = 7, r3 = 4

3 −
1

3m = 7
6 .

• 3 machines, 7 jobs with jobs 1, 2 of length 5, jobs 3, 4 of length 4 and jobs
5, 6, 7 of length 3.

• C∗m=3 = 9, CLPT
m=3 = 11, r3 = 4

3 −
1

3m = 11
9 .

• m machines, 2m+ 1 jobs with jobs 1, 2 of length 2m− 1, jobs 3, 4 of
length 2m− 2 ... jobs 2m− 1, 2m, 2m+ 1 of length m.

• C∗m = 3m, CLPT
m = 4m− 1, r3 = 4m−1

3m = 4
3 −

1
3m .

• Worst-case always occurs with 2m+ 1 = n jobs where the critical job is
job 2m+ 1 = n in position 3 and when C∗m =

∑n
i=1 pi/m.



Tight worst-case examples for LPT

• 2 machines - 5 jobs with jobs 1, 2 of length 3 and jobs 3, 4, 5 of length 2.

• C∗m=2 = 6, CLPT
m=2 = 7, r3 = 4

3 −
1

3m = 7
6 .

• 3 machines, 7 jobs with jobs 1, 2 of length 5, jobs 3, 4 of length 4 and jobs
5, 6, 7 of length 3.

• C∗m=3 = 9, CLPT
m=3 = 11, r3 = 4

3 −
1

3m = 11
9 .

• m machines, 2m+ 1 jobs with jobs 1, 2 of length 2m− 1, jobs 3, 4 of
length 2m− 2 ... jobs 2m− 1, 2m, 2m+ 1 of length m.

• C∗m = 3m, CLPT
m = 4m− 1, r3 = 4m−1

3m = 4
3 −

1
3m .

• Worst-case always occurs with 2m+ 1 = n jobs where the critical job is
job 2m+ 1 = n in position 3 and when C∗m =

∑n
i=1 pi/m.



LPT revisited

• We assume that the LPT critical job is the last one, namely j′ = n.
Otherwise, we would have further jobs after the critical job which do not
affect the makespan provided by LPT but can contribute to increase the
optimal solution value.

• We analyze for m ≥ 3:
• 2m+ 2 ≤ j′ = n ≤ 3m (or else the critical job would be in position ≥ 4);

• j′ = n = 2m+ 1.

• We employ Linear Programming to perform the analysis.



LPT revisited

• We assume that the LPT critical job is the last one, namely j′ = n.
Otherwise, we would have further jobs after the critical job which do not
affect the makespan provided by LPT but can contribute to increase the
optimal solution value.

• We analyze for m ≥ 3:

• 2m+ 2 ≤ j′ = n ≤ 3m (or else the critical job would be in position ≥ 4);

• j′ = n = 2m+ 1.

• We employ Linear Programming to perform the analysis.



LPT revisited

• We assume that the LPT critical job is the last one, namely j′ = n.
Otherwise, we would have further jobs after the critical job which do not
affect the makespan provided by LPT but can contribute to increase the
optimal solution value.

• We analyze for m ≥ 3:

• 2m+ 2 ≤ j′ = n ≤ 3m (or else the critical job would be in position ≥ 4);

• j′ = n = 2m+ 1.

• We employ Linear Programming to perform the analysis.



LPT revisited

• We assume that the LPT critical job is the last one, namely j′ = n.
Otherwise, we would have further jobs after the critical job which do not
affect the makespan provided by LPT but can contribute to increase the
optimal solution value.

• We analyze for m ≥ 3:

• 2m+ 2 ≤ j′ = n ≤ 3m (or else the critical job would be in position ≥ 4);

• j′ = n = 2m+ 1.

• We employ Linear Programming to perform the analysis.



LPT revisited: 2m+ 2 ≤ n ≤ 3m

Proposition

If LPT schedules at least 3 jobs on a non crit. machine before assigning the
crit. job, then LPT has an approx. bound ≤ 4

3 −
1

3(m−1) for m ≥ 5.

Sketch of proof.

• We assume n in position 3, or else either r2 holds or at least r4 holds.
Hence, LPT schedules at least another job in position ≥ 3.

• We consider an LP model where we arbitrarily set the value CLPT
m to 1

and minimize the value of C∗m.

• L denotes the starting time of job n, i.e. CLPT
m = L+ pn.

• C1 is the compl. time of the non-crit. machine processing at least 3 jobs.

• C2 is the sum of compl. times of the other (m− 2) machines, i.e.

C2 =
n∑

j=1

pj − C1 − (L+ pn).

• Due to list scheduling, condition C2

m−2 ≥ L holds.

• As n is in position 3, condition pn ≤ C∗m
3 holds.



LPT revisited: 2m+ 2 ≤ n ≤ 3m

Proposition

If LPT schedules at least 3 jobs on a non crit. machine before assigning the
crit. job, then LPT has an approx. bound ≤ 4

3 −
1

3(m−1) for m ≥ 5.

Sketch of proof.

• We assume n in position 3, or else either r2 holds or at least r4 holds.
Hence, LPT schedules at least another job in position ≥ 3.

• We consider an LP model where we arbitrarily set the value CLPT
m to 1

and minimize the value of C∗m.

• L denotes the starting time of job n, i.e. CLPT
m = L+ pn.

• C1 is the compl. time of the non-crit. machine processing at least 3 jobs.

• C2 is the sum of compl. times of the other (m− 2) machines, i.e.

C2 =
n∑

j=1

pj − C1 − (L+ pn).

• Due to list scheduling, condition C2

m−2 ≥ L holds.

• As n is in position 3, condition pn ≤ C∗m
3 holds.



LPT revisited: 2m+ 2 ≤ n ≤ 3m

Proposition

If LPT schedules at least 3 jobs on a non crit. machine before assigning the
crit. job, then LPT has an approx. bound ≤ 4

3 −
1

3(m−1) for m ≥ 5.

Sketch of proof.

• We assume n in position 3, or else either r2 holds or at least r4 holds.
Hence, LPT schedules at least another job in position ≥ 3.

• We consider an LP model where we arbitrarily set the value CLPT
m to 1

and minimize the value of C∗m.

• L denotes the starting time of job n, i.e. CLPT
m = L+ pn.

• C1 is the compl. time of the non-crit. machine processing at least 3 jobs.

• C2 is the sum of compl. times of the other (m− 2) machines, i.e.

C2 =
n∑

j=1

pj − C1 − (L+ pn).

• Due to list scheduling, condition C2

m−2 ≥ L holds.

• As n is in position 3, condition pn ≤ C∗m
3 holds.



LPT revisited: 2m+ 2 ≤ n ≤ 3m

Proposition

If LPT schedules at least 3 jobs on a non crit. machine before assigning the
crit. job, then LPT has an approx. bound ≤ 4

3 −
1

3(m−1) for m ≥ 5.

Sketch of proof.

• We assume n in position 3, or else either r2 holds or at least r4 holds.
Hence, LPT schedules at least another job in position ≥ 3.

• We consider an LP model where we arbitrarily set the value CLPT
m to 1

and minimize the value of C∗m.

• L denotes the starting time of job n, i.e. CLPT
m = L+ pn.

• C1 is the compl. time of the non-crit. machine processing at least 3 jobs.

• C2 is the sum of compl. times of the other (m− 2) machines, i.e.

C2 =
n∑

j=1

pj − C1 − (L+ pn).

• Due to list scheduling, condition C2

m−2 ≥ L holds.

• As n is in position 3, condition pn ≤ C∗m
3 holds.



LPT revisited: 2m+ 2 ≤ n ≤ 3m

Proposition

If LPT schedules at least 3 jobs on a non crit. machine before assigning the
crit. job, then LPT has an approx. bound ≤ 4

3 −
1

3(m−1) for m ≥ 5.

Sketch of proof.

• We assume n in position 3, or else either r2 holds or at least r4 holds.
Hence, LPT schedules at least another job in position ≥ 3.

• We consider an LP model where we arbitrarily set the value CLPT
m to 1

and minimize the value of C∗m.

• L denotes the starting time of job n, i.e. CLPT
m = L+ pn.

• C1 is the compl. time of the non-crit. machine processing at least 3 jobs.

• C2 is the sum of compl. times of the other (m− 2) machines, i.e.

C2 =
n∑

j=1

pj − C1 − (L+ pn).

• Due to list scheduling, condition C2

m−2 ≥ L holds.

• As n is in position 3, condition pn ≤ C∗m
3 holds.



LPT revisited: 2m+ 2 ≤ n ≤ 3m

Proposition

If LPT schedules at least 3 jobs on a non crit. machine before assigning the
crit. job, then LPT has an approx. bound ≤ 4

3 −
1

3(m−1) for m ≥ 5.

Sketch of proof.

• We assume n in position 3, or else either r2 holds or at least r4 holds.
Hence, LPT schedules at least another job in position ≥ 3.

• We consider an LP model where we arbitrarily set the value CLPT
m to 1

and minimize the value of C∗m.

• L denotes the starting time of job n, i.e. CLPT
m = L+ pn.

• C1 is the compl. time of the non-crit. machine processing at least 3 jobs.

• C2 is the sum of compl. times of the other (m− 2) machines, i.e.

C2 =
n∑

j=1

pj − C1 − (L+ pn).

• Due to list scheduling, condition C2

m−2 ≥ L holds.

• As n is in position 3, condition pn ≤ C∗m
3 holds.



LPT revisited: 2m+ 2 ≤ n ≤ 3m

Proposition

If LPT schedules at least 3 jobs on a non crit. machine before assigning the
crit. job, then LPT has an approx. bound ≤ 4

3 −
1

3(m−1) for m ≥ 5.

Sketch of proof.

• We assume n in position 3, or else either r2 holds or at least r4 holds.
Hence, LPT schedules at least another job in position ≥ 3.

• We consider an LP model where we arbitrarily set the value CLPT
m to 1

and minimize the value of C∗m.

• L denotes the starting time of job n, i.e. CLPT
m = L+ pn.

• C1 is the compl. time of the non-crit. machine processing at least 3 jobs.

• C2 is the sum of compl. times of the other (m− 2) machines, i.e.

C2 =
n∑

j=1

pj − C1 − (L+ pn).

• Due to list scheduling, condition C2

m−2 ≥ L holds.

• As n is in position 3, condition pn ≤ C∗m
3 holds.



LPT revisited: 2m+ 2 ≤ n ≤ 3m

Proposition

If LPT schedules at least 3 jobs on a non crit. machine before assigning the
crit. job, then LPT has an approx. bound ≤ 4

3 −
1

3(m−1) for m ≥ 5.

Sketch of proof.

• We assume n in position 3, or else either r2 holds or at least r4 holds.
Hence, LPT schedules at least another job in position ≥ 3.

• We consider an LP model where we arbitrarily set the value CLPT
m to 1

and minimize the value of C∗m.

• L denotes the starting time of job n, i.e. CLPT
m = L+ pn.

• C1 is the compl. time of the non-crit. machine processing at least 3 jobs.

• C2 is the sum of compl. times of the other (m− 2) machines, i.e.

C2 =
n∑

j=1

pj − C1 − (L+ pn).

• Due to list scheduling, condition C2

m−2 ≥ L holds.

• As n is in position 3, condition pn ≤ C∗m
3 holds.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• We associate non-negative variables π and ξ with pn and
n∑

j=1

pj .

• We associate non-negative variables c1, c2, l, opt with C1, C2, L and C∗m.

• The following LP model is implied:

minimize opt (1)

subject to −m · opt+ ξ ≤ 0 (2)

3 · π − c1 ≤ 0 (3)

l − c1 ≤ 0 (4)

(m− 2)l − c2 ≤ 0 (5)

c1 + l + π + c2 − ξ = 0 (6)

l + π = 1 (7)

π − opt

3
≤ 0 (8)

π, ξ, c1, c2, l, opt ≥ 0 (9)



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• We associate non-negative variables π and ξ with pn and
n∑

j=1

pj .

• We associate non-negative variables c1, c2, l, opt with C1, C2, L and C∗m.

• The following LP model is implied:

minimize opt (1)

subject to −m · opt+ ξ ≤ 0 (2)

3 · π − c1 ≤ 0 (3)

l − c1 ≤ 0 (4)

(m− 2)l − c2 ≤ 0 (5)

c1 + l + π + c2 − ξ = 0 (6)

l + π = 1 (7)

π − opt

3
≤ 0 (8)

π, ξ, c1, c2, l, opt ≥ 0 (9)



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The minimization of the objective function (1), after setting w.l.o.g LPT
solution value to 1 (constraint (7)), provides an upper bound on the
performance ratio of LPT rule.

• Constraint (2) represents the bound C∗m ≥

n∑
j=1

pj

m .

• Constraint (3) states that the value of c1 is at the least 3pn, since 3 jobs
with processing time ≥ pn are assigned to a non critical machine.

• Constraint (4) states that the processing time of the critical machine
before the last job is loaded is less than the completion time of the other
machine processing at least three jobs.

• Constraint (5) fulfills the list scheduling requirement.

• Constraint (6) guarantees that variable ξ represents
n∑

j=1

pj

• Constraint (8) represents condition pn ≤ C∗m
3 .

• Constraints (9) state that all variables are non-negative.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The minimization of the objective function (1), after setting w.l.o.g LPT
solution value to 1 (constraint (7)), provides an upper bound on the
performance ratio of LPT rule.

• Constraint (2) represents the bound C∗m ≥

n∑
j=1

pj

m .

• Constraint (3) states that the value of c1 is at the least 3pn, since 3 jobs
with processing time ≥ pn are assigned to a non critical machine.

• Constraint (4) states that the processing time of the critical machine
before the last job is loaded is less than the completion time of the other
machine processing at least three jobs.

• Constraint (5) fulfills the list scheduling requirement.

• Constraint (6) guarantees that variable ξ represents
n∑

j=1

pj

• Constraint (8) represents condition pn ≤ C∗m
3 .

• Constraints (9) state that all variables are non-negative.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The minimization of the objective function (1), after setting w.l.o.g LPT
solution value to 1 (constraint (7)), provides an upper bound on the
performance ratio of LPT rule.

• Constraint (2) represents the bound C∗m ≥

n∑
j=1

pj

m .

• Constraint (3) states that the value of c1 is at the least 3pn, since 3 jobs
with processing time ≥ pn are assigned to a non critical machine.

• Constraint (4) states that the processing time of the critical machine
before the last job is loaded is less than the completion time of the other
machine processing at least three jobs.

• Constraint (5) fulfills the list scheduling requirement.

• Constraint (6) guarantees that variable ξ represents
n∑

j=1

pj

• Constraint (8) represents condition pn ≤ C∗m
3 .

• Constraints (9) state that all variables are non-negative.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The minimization of the objective function (1), after setting w.l.o.g LPT
solution value to 1 (constraint (7)), provides an upper bound on the
performance ratio of LPT rule.

• Constraint (2) represents the bound C∗m ≥

n∑
j=1

pj

m .

• Constraint (3) states that the value of c1 is at the least 3pn, since 3 jobs
with processing time ≥ pn are assigned to a non critical machine.

• Constraint (4) states that the processing time of the critical machine
before the last job is loaded is less than the completion time of the other
machine processing at least three jobs.

• Constraint (5) fulfills the list scheduling requirement.

• Constraint (6) guarantees that variable ξ represents
n∑

j=1

pj

• Constraint (8) represents condition pn ≤ C∗m
3 .

• Constraints (9) state that all variables are non-negative.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The minimization of the objective function (1), after setting w.l.o.g LPT
solution value to 1 (constraint (7)), provides an upper bound on the
performance ratio of LPT rule.

• Constraint (2) represents the bound C∗m ≥

n∑
j=1

pj

m .

• Constraint (3) states that the value of c1 is at the least 3pn, since 3 jobs
with processing time ≥ pn are assigned to a non critical machine.

• Constraint (4) states that the processing time of the critical machine
before the last job is loaded is less than the completion time of the other
machine processing at least three jobs.

• Constraint (5) fulfills the list scheduling requirement.

• Constraint (6) guarantees that variable ξ represents
n∑

j=1

pj

• Constraint (8) represents condition pn ≤ C∗m
3 .

• Constraints (9) state that all variables are non-negative.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The minimization of the objective function (1), after setting w.l.o.g LPT
solution value to 1 (constraint (7)), provides an upper bound on the
performance ratio of LPT rule.

• Constraint (2) represents the bound C∗m ≥

n∑
j=1

pj

m .

• Constraint (3) states that the value of c1 is at the least 3pn, since 3 jobs
with processing time ≥ pn are assigned to a non critical machine.

• Constraint (4) states that the processing time of the critical machine
before the last job is loaded is less than the completion time of the other
machine processing at least three jobs.

• Constraint (5) fulfills the list scheduling requirement.

• Constraint (6) guarantees that variable ξ represents
n∑

j=1

pj

• Constraint (8) represents condition pn ≤ C∗m
3 .

• Constraints (9) state that all variables are non-negative.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The minimization of the objective function (1), after setting w.l.o.g LPT
solution value to 1 (constraint (7)), provides an upper bound on the
performance ratio of LPT rule.

• Constraint (2) represents the bound C∗m ≥

n∑
j=1

pj

m .

• Constraint (3) states that the value of c1 is at the least 3pn, since 3 jobs
with processing time ≥ pn are assigned to a non critical machine.

• Constraint (4) states that the processing time of the critical machine
before the last job is loaded is less than the completion time of the other
machine processing at least three jobs.

• Constraint (5) fulfills the list scheduling requirement.

• Constraint (6) guarantees that variable ξ represents
n∑

j=1

pj

• Constraint (8) represents condition pn ≤ C∗m
3 .

• Constraints (9) state that all variables are non-negative.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The proposed LP model is continuous and contains just 6 variables and 7
constraints for any fixed m.

• By strong duality (and a little bit of reverse engineering) it is possible to
show that in the optimal solution, for any m ≥ 5, the variables values are
as follows

π =
m− 1

4m− 5
; ξ =

3m(m− 1)

4m− 5
;

c1 =
3(m− 1)

4m− 5
; c2 =

(m− 2)(3(m− 1)− 1)

4m− 5
;

l =
3(m− 1)− 1

4m− 5
; opt =

3(m− 1)

4m− 5
.

• Correspondingly, for any m ≥ 5, we have
CLPT

m

C∗m
≤ 1/opt = 4m−5

3(m−1) = 4
3 −

1
3(m−1) .

• Notice that this bound is not tight.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The proposed LP model is continuous and contains just 6 variables and 7
constraints for any fixed m.

• By strong duality (and a little bit of reverse engineering) it is possible to
show that in the optimal solution, for any m ≥ 5, the variables values are
as follows

π =
m− 1

4m− 5
; ξ =

3m(m− 1)

4m− 5
;

c1 =
3(m− 1)

4m− 5
; c2 =

(m− 2)(3(m− 1)− 1)

4m− 5
;

l =
3(m− 1)− 1

4m− 5
; opt =

3(m− 1)

4m− 5
.

• Correspondingly, for any m ≥ 5, we have
CLPT

m

C∗m
≤ 1/opt = 4m−5

3(m−1) = 4
3 −

1
3(m−1) .

• Notice that this bound is not tight.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The proposed LP model is continuous and contains just 6 variables and 7
constraints for any fixed m.

• By strong duality (and a little bit of reverse engineering) it is possible to
show that in the optimal solution, for any m ≥ 5, the variables values are
as follows

π =
m− 1

4m− 5
; ξ =

3m(m− 1)

4m− 5
;

c1 =
3(m− 1)

4m− 5
; c2 =

(m− 2)(3(m− 1)− 1)

4m− 5
;

l =
3(m− 1)− 1

4m− 5
; opt =

3(m− 1)

4m− 5
.

• Correspondingly, for any m ≥ 5, we have
CLPT

m

C∗m
≤ 1/opt = 4m−5

3(m−1) = 4
3 −

1
3(m−1) .

• Notice that this bound is not tight.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The proposed LP model is continuous and contains just 6 variables and 7
constraints for any fixed m.

• By strong duality (and a little bit of reverse engineering) it is possible to
show that in the optimal solution, for any m ≥ 5, the variables values are
as follows

π =
m− 1

4m− 5
; ξ =

3m(m− 1)

4m− 5
;

c1 =
3(m− 1)

4m− 5
; c2 =

(m− 2)(3(m− 1)− 1)

4m− 5
;

l =
3(m− 1)− 1

4m− 5
; opt =

3(m− 1)

4m− 5
.

• Correspondingly, for any m ≥ 5, we have
CLPT

m

C∗m
≤ 1/opt = 4m−5

3(m−1) = 4
3 −

1
3(m−1) .

• Notice that this bound is not tight.



LPT revisited: 2m+ 2 ≤ n ≤ 3m (LP formulation)

• The proposed LP model is continuous and contains just 6 variables and 7
constraints for any fixed m.

• By strong duality (and a little bit of reverse engineering) it is possible to
show that in the optimal solution, for any m ≥ 5, the variables values are
as follows

π =
m− 1

4m− 5
; ξ =

3m(m− 1)

4m− 5
;

c1 =
3(m− 1)

4m− 5
; c2 =

(m− 2)(3(m− 1)− 1)

4m− 5
;

l =
3(m− 1)− 1

4m− 5
; opt =

3(m− 1)

4m− 5
.

• Correspondingly, for any m ≥ 5, we have
CLPT

m

C∗m
≤ 1/opt = 4m−5

3(m−1) = 4
3 −

1
3(m−1) .

• Notice that this bound is not tight.



LPT revisited: 2m+ 2 ≤ n ≤ 3m

• A more general results, provided below, actually holds.

Proposition

If LPT schedules at least k jobs on a non crit. machine before assigning the
crit. job, then LPT has an approx. bound ≤ k+1

k −
1

k(m−1) for m ≥ k + 2.

• For m ≤ 4, by lp-modeling and partial enumeration it is possible to
obtain the following result.

Proposition

In Pm||Cmax instances with 2m+ 2 ≤ n ≤ 3m, LPT (with job n critical) has
an approximation ratio ≤ 4

3 −
1

3(m−1) for 3 ≤ m ≤ 4.



LPT revisited: 2m+ 2 ≤ n ≤ 3m

• A more general results, provided below, actually holds.

Proposition

If LPT schedules at least k jobs on a non crit. machine before assigning the
crit. job, then LPT has an approx. bound ≤ k+1

k −
1

k(m−1) for m ≥ k + 2.

• For m ≤ 4, by lp-modeling and partial enumeration it is possible to
obtain the following result.

Proposition

In Pm||Cmax instances with 2m+ 2 ≤ n ≤ 3m, LPT (with job n critical) has
an approximation ratio ≤ 4

3 −
1

3(m−1) for 3 ≤ m ≤ 4.



LPT revisited: further subcases

The following propositions also hold

Proposition

In Pm||Cmax instances with n ≤ 2m and m ≥ 3, LPT has an approximation

ratio ≤
(

4
3 −

1
3(m−1)

)
.

Proposition

In Pm||Cmax, m ≥ 3 and instances with n = 2m+ 1, if LPT loads at least
three jobs on a machine before the critical job, then it has an approximation

ratio ≤
(

4
3 −

1
3(m−1)

)
.

• The only case remaining is then related to instances with n = 2m+ 1
where LPT schedules job n only in third position and n is critical.



LPT revisited: further subcases

The following propositions also hold

Proposition

In Pm||Cmax instances with n ≤ 2m and m ≥ 3, LPT has an approximation

ratio ≤
(

4
3 −

1
3(m−1)

)
.

Proposition

In Pm||Cmax, m ≥ 3 and instances with n = 2m+ 1, if LPT loads at least
three jobs on a machine before the critical job, then it has an approximation

ratio ≤
(

4
3 −

1
3(m−1)

)
.

• The only case remaining is then related to instances with n = 2m+ 1
where LPT schedules job n only in third position and n is critical.



LPT revisited: further subcases

The following propositions also hold

Proposition

In Pm||Cmax instances with n ≤ 2m and m ≥ 3, LPT has an approximation

ratio ≤
(

4
3 −

1
3(m−1)

)
.

Proposition

In Pm||Cmax, m ≥ 3 and instances with n = 2m+ 1, if LPT loads at least
three jobs on a machine before the critical job, then it has an approximation

ratio ≤
(

4
3 −

1
3(m−1)

)
.

• The only case remaining is then related to instances with n = 2m+ 1
where LPT schedules job n only in third position and n is critical.



Improving LPT for n = 2m+ 1

• We consider a slight algorithmic variation where a set of the sorted jobs is
first loaded on a machine and then LPT is applied on the remaining job
set.

• We denote this variant as LPT (S) where S represents the set of jobs
assigned all together to a machine first.

We consider the following Algorithm 1.

Input: Pm||Cmax instance with n jobs and m ≥ 3 machines.
- Apply LPT yielding a schedule with makespan z1 and k−1 jobs on the critical
machine before job n.
- Apply LPT ′ = LPT ({n}) with solution value z2.
- Apply LPT ′′ = LPT ({(n− k + 1), ..., n}) with solution value z3.
- Return min{z1, z2, z3}.

In practice, this algorithm applies LPT first and then re-applies LPT after
having loaded on a machine first either its critical job n alone or the tuple of k
jobs n− k + 1, ..., n.



Improving LPT for n = 2m+ 1

• We consider a slight algorithmic variation where a set of the sorted jobs is
first loaded on a machine and then LPT is applied on the remaining job
set.

• We denote this variant as LPT (S) where S represents the set of jobs
assigned all together to a machine first.

We consider the following Algorithm 1.

Input: Pm||Cmax instance with n jobs and m ≥ 3 machines.
- Apply LPT yielding a schedule with makespan z1 and k−1 jobs on the critical
machine before job n.
- Apply LPT ′ = LPT ({n}) with solution value z2.
- Apply LPT ′′ = LPT ({(n− k + 1), ..., n}) with solution value z3.
- Return min{z1, z2, z3}.

In practice, this algorithm applies LPT first and then re-applies LPT after
having loaded on a machine first either its critical job n alone or the tuple of k
jobs n− k + 1, ..., n.



Improving LPT for n = 2m+ 1

• We consider a slight algorithmic variation where a set of the sorted jobs is
first loaded on a machine and then LPT is applied on the remaining job
set.

• We denote this variant as LPT (S) where S represents the set of jobs
assigned all together to a machine first.

We consider the following Algorithm 1.

Input: Pm||Cmax instance with n jobs and m ≥ 3 machines.
- Apply LPT yielding a schedule with makespan z1 and k−1 jobs on the critical
machine before job n.
- Apply LPT ′ = LPT ({n}) with solution value z2.
- Apply LPT ′′ = LPT ({(n− k + 1), ..., n}) with solution value z3.
- Return min{z1, z2, z3}.

In practice, this algorithm applies LPT first and then re-applies LPT after
having loaded on a machine first either its critical job n alone or the tuple of k
jobs n− k + 1, ..., n.



Handling instances with n jobs and j′ = 2m+ 1 6= n

We consider first the case where j′ 6= n and there are jobs processed after the
critical job in LPT and one of such jobs is critical in either LPT ′ or LPT ′′.

Proposition

In Pm||Cmax instances where there are jobs processed after the critical job in
the LPT solution and one of such jobs (say job l) is critical in either LPT ′ or
LPT ′′ schedules, Algorithm 1 has a performance guarantee of 4

3 −
7m−4

3(3m2+m−1) .

Proof hints (formal proof needs some more algebra):

• it is sufficient to exploit the difference between
j′∑

j=1

pj and
n∑

j=1

pj .

• If
n∑

j=j′+1

pj is large enough, then

j′∑
j=1

pj

m + pj′/m�

n∑
j=1

pj

m + pl/m, namely,

the bound on the LPT approx. ratio becomes small enough;

• if
n∑

j=j′+1

pj is small enough, then the approx. ratio of LPT ′ or LPT ′′ also

becomes small enough.



Handling instances with n jobs and j′ = 2m+ 1 6= n

We consider first the case where j′ 6= n and there are jobs processed after the
critical job in LPT and one of such jobs is critical in either LPT ′ or LPT ′′.

Proposition

In Pm||Cmax instances where there are jobs processed after the critical job in
the LPT solution and one of such jobs (say job l) is critical in either LPT ′ or
LPT ′′ schedules, Algorithm 1 has a performance guarantee of 4

3 −
7m−4

3(3m2+m−1) .

Proof hints (formal proof needs some more algebra):

• it is sufficient to exploit the difference between
j′∑

j=1

pj and
n∑

j=1

pj .

• If
n∑

j=j′+1

pj is large enough, then

j′∑
j=1

pj

m + pj′/m�

n∑
j=1

pj

m + pl/m, namely,

the bound on the LPT approx. ratio becomes small enough;

• if
n∑

j=j′+1

pj is small enough, then the approx. ratio of LPT ′ or LPT ′′ also

becomes small enough.



Handling instances with n jobs and j′ = 2m+ 1 6= n

We consider first the case where j′ 6= n and there are jobs processed after the
critical job in LPT and one of such jobs is critical in either LPT ′ or LPT ′′.

Proposition

In Pm||Cmax instances where there are jobs processed after the critical job in
the LPT solution and one of such jobs (say job l) is critical in either LPT ′ or
LPT ′′ schedules, Algorithm 1 has a performance guarantee of 4

3 −
7m−4

3(3m2+m−1) .

Proof hints (formal proof needs some more algebra):

• it is sufficient to exploit the difference between
j′∑

j=1

pj and
n∑

j=1

pj .

• If
n∑

j=j′+1

pj is large enough, then

j′∑
j=1

pj

m + pj′/m�

n∑
j=1

pj

m + pl/m, namely,

the bound on the LPT approx. ratio becomes small enough;

• if
n∑

j=j′+1

pj is small enough, then the approx. ratio of LPT ′ or LPT ′′ also

becomes small enough.



Handling instances with n jobs and j′ = 2m+ 1 6= n

We consider first the case where j′ 6= n and there are jobs processed after the
critical job in LPT and one of such jobs is critical in either LPT ′ or LPT ′′.

Proposition

In Pm||Cmax instances where there are jobs processed after the critical job in
the LPT solution and one of such jobs (say job l) is critical in either LPT ′ or
LPT ′′ schedules, Algorithm 1 has a performance guarantee of 4

3 −
7m−4

3(3m2+m−1) .

Proof hints (formal proof needs some more algebra):

• it is sufficient to exploit the difference between
j′∑

j=1

pj and
n∑

j=1

pj .

• If
n∑

j=j′+1

pj is large enough, then

j′∑
j=1

pj

m + pj′/m�

n∑
j=1

pj

m + pl/m, namely,

the bound on the LPT approx. ratio becomes small enough;

• if
n∑

j=j′+1

pj is small enough, then the approx. ratio of LPT ′ or LPT ′′ also

becomes small enough.



Handling instances with n jobs and j′ = 2m+ 1 6= n

We consider first the case where j′ 6= n and there are jobs processed after the
critical job in LPT and one of such jobs is critical in either LPT ′ or LPT ′′.

Proposition

In Pm||Cmax instances where there are jobs processed after the critical job in
the LPT solution and one of such jobs (say job l) is critical in either LPT ′ or
LPT ′′ schedules, Algorithm 1 has a performance guarantee of 4

3 −
7m−4

3(3m2+m−1) .

Proof hints (formal proof needs some more algebra):

• it is sufficient to exploit the difference between
j′∑

j=1

pj and
n∑

j=1

pj .

• If
n∑

j=j′+1

pj is large enough, then

j′∑
j=1

pj

m + pj′/m�

n∑
j=1

pj

m + pl/m, namely,

the bound on the LPT approx. ratio becomes small enough;

• if
n∑

j=j′+1

pj is small enough, then the approx. ratio of LPT ′ or LPT ′′ also

becomes small enough.



Handling instances with n = 2m+ 1 jobs and
j′ = n = 2m+ 1

• Note that LPT must couple jobs 1, . . . ,m respectively with jobs
2m, . . . ,m+ 1 on the m machines before scheduling job 2m+ 1, or else

LPT has an approximation ratio ≤
(

4
3 −

1
3(m−1)

)
.

• Hence, the LPT schedule is as follows

M1 : p1, p2m

M2 : p2, p2m−1

. . .

Mm−1 : pm−1, pm+2

Mm : pm, pm+1

where job 2m+ 1 will be assigned to the machine with the least
processing time.



Handling instances with n = 2m+ 1 jobs and
j′ = n = 2m+ 1

• Note that LPT must couple jobs 1, . . . ,m respectively with jobs
2m, . . . ,m+ 1 on the m machines before scheduling job 2m+ 1, or else

LPT has an approximation ratio ≤
(

4
3 −

1
3(m−1)

)
.

• Hence, the LPT schedule is as follows

M1 : p1, p2m

M2 : p2, p2m−1

. . .

Mm−1 : pm−1, pm+2

Mm : pm, pm+1

where job 2m+ 1 will be assigned to the machine with the least
processing time.



Handling instances with n = 2m+ 1 jobs and
j′ = n = 2m+ 1

We consider two specific cases:

1 p2m+1 ≥ p1 − pm. =⇒ The LPT ′ schedule is as follows

M1 : p2m+1, pm, p2m

M2 : p1, p2m−1

M3 : p2, p2m−2

. . .

Mm−1 : pm−2, pm+2

Mm : pm−1, pm+1

with subcases

1 The LPT ′ makespan is on M1.
2 The LPT ′ makespan is on M2,...Mm.

2 p2m+1 < p1 − pm.



Handling instances with n = 2m+ 1 jobs and
j′ = n = 2m+ 1

We consider two specific cases:

1 p2m+1 ≥ p1 − pm. =⇒ The LPT ′ schedule is as follows

M1 : p2m+1, pm, p2m

M2 : p1, p2m−1

M3 : p2, p2m−2

. . .

Mm−1 : pm−2, pm+2

Mm : pm−1, pm+1

with subcases

1 The LPT ′ makespan is on M1.
2 The LPT ′ makespan is on M2,...Mm.

2 p2m+1 < p1 − pm.



Handling instances with n = 2m+ 1 jobs and
j′ = n = 2m+ 1

We consider two specific cases:

1 p2m+1 ≥ p1 − pm. =⇒ The LPT ′ schedule is as follows

M1 : p2m+1, pm, p2m

M2 : p1, p2m−1

M3 : p2, p2m−2

. . .

Mm−1 : pm−2, pm+2

Mm : pm−1, pm+1

with subcases

1 The LPT ′ makespan is on M1.
2 The LPT ′ makespan is on M2,...Mm.

2 p2m+1 < p1 − pm.



Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

• If LPT ′ is not optimal, then C∗m ≥ pm−1 + pm.

• We get the following result.

Proposition

If p2m+1 ≥ p1 − pm and LPT ′ makespan is equal to p2m+1 + pm + p2m, then
the proposed algorithm has an approximation ratio not superior to 7

6 .

• Proof: we again employ Linear Programming to evaluate the performance
of LPT ′. We consider non-negative variables xj associated with pj
(j = 1, . . . , n) and a positive parameter OPT > 0 associated with C∗m.



Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

• If LPT ′ is not optimal, then C∗m ≥ pm−1 + pm.

• We get the following result.

Proposition

If p2m+1 ≥ p1 − pm and LPT ′ makespan is equal to p2m+1 + pm + p2m, then
the proposed algorithm has an approximation ratio not superior to 7

6 .

• Proof: we again employ Linear Programming to evaluate the performance
of LPT ′. We consider non-negative variables xj associated with pj
(j = 1, . . . , n) and a positive parameter OPT > 0 associated with C∗m.



Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

• If LPT ′ is not optimal, then C∗m ≥ pm−1 + pm.

• We get the following result.

Proposition

If p2m+1 ≥ p1 − pm and LPT ′ makespan is equal to p2m+1 + pm + p2m, then
the proposed algorithm has an approximation ratio not superior to 7

6 .

• Proof: we again employ Linear Programming to evaluate the performance
of LPT ′. We consider non-negative variables xj associated with pj
(j = 1, . . . , n) and a positive parameter OPT > 0 associated with C∗m.



Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

The LP model.

maximize x(2m+1) + xm + x2m (10)

subject to x(m−1) + xm ≤ OPT (11)

x(2m−1) + x2m + x(2m+1) ≤ OPT (12)

x(2m+1) − (x1 − xm) ≥ 0 (13)

x1 − x(m−1) ≥ 0 (14)

x(m−1) − xm ≥ 0 (15)

xm − x(m+1) ≥ 0 (16)

x(m+1) − x(2m−1) ≥ 0 (17)

x(2m−1) − x2m ≥ 0 (18)

x2m − x(2m+1) ≥ 0 (19)

x1, x(m−1), xm, x(m+1), x(2m−1), x2m, x(2m+1) ≥ 0 (20)



Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

• The objective function value (10) represents an upper bound on the worst
case performance of the algorithm.

• Constraints (11)–(12) correspond to C∗m ≥ pm−1 + pm and
C∗m ≥ p2m−1 + p2m + p2m+1.

• Constraint (13) simply represents the initial assumption p2m+1 ≥ p1 − pm.

• Constraints (14)–(19) state that the considered relevant jobs are sorted by
non-increasing processing times.

• Constraints (20) indicate that the variables are non-negative.

• Further viable constraints where not necessary to reach the required
result. By setting OPT = 1, the cost function has value 7

6 .



Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

• The objective function value (10) represents an upper bound on the worst
case performance of the algorithm.

• Constraints (11)–(12) correspond to C∗m ≥ pm−1 + pm and
C∗m ≥ p2m−1 + p2m + p2m+1.

• Constraint (13) simply represents the initial assumption p2m+1 ≥ p1 − pm.

• Constraints (14)–(19) state that the considered relevant jobs are sorted by
non-increasing processing times.

• Constraints (20) indicate that the variables are non-negative.

• Further viable constraints where not necessary to reach the required
result. By setting OPT = 1, the cost function has value 7

6 .



Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

• The objective function value (10) represents an upper bound on the worst
case performance of the algorithm.

• Constraints (11)–(12) correspond to C∗m ≥ pm−1 + pm and
C∗m ≥ p2m−1 + p2m + p2m+1.

• Constraint (13) simply represents the initial assumption p2m+1 ≥ p1 − pm.

• Constraints (14)–(19) state that the considered relevant jobs are sorted by
non-increasing processing times.

• Constraints (20) indicate that the variables are non-negative.

• Further viable constraints where not necessary to reach the required
result. By setting OPT = 1, the cost function has value 7

6 .



Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

• The objective function value (10) represents an upper bound on the worst
case performance of the algorithm.

• Constraints (11)–(12) correspond to C∗m ≥ pm−1 + pm and
C∗m ≥ p2m−1 + p2m + p2m+1.

• Constraint (13) simply represents the initial assumption p2m+1 ≥ p1 − pm.

• Constraints (14)–(19) state that the considered relevant jobs are sorted by
non-increasing processing times.

• Constraints (20) indicate that the variables are non-negative.

• Further viable constraints where not necessary to reach the required
result. By setting OPT = 1, the cost function has value 7

6 .



Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

• The objective function value (10) represents an upper bound on the worst
case performance of the algorithm.

• Constraints (11)–(12) correspond to C∗m ≥ pm−1 + pm and
C∗m ≥ p2m−1 + p2m + p2m+1.

• Constraint (13) simply represents the initial assumption p2m+1 ≥ p1 − pm.

• Constraints (14)–(19) state that the considered relevant jobs are sorted by
non-increasing processing times.

• Constraints (20) indicate that the variables are non-negative.

• Further viable constraints where not necessary to reach the required
result. By setting OPT = 1, the cost function has value 7

6 .



Case j′ = n = 2m+ 1, p2m+1 ≥ p1 − pm,
LPT ′ makespan is on M1

• The objective function value (10) represents an upper bound on the worst
case performance of the algorithm.

• Constraints (11)–(12) correspond to C∗m ≥ pm−1 + pm and
C∗m ≥ p2m−1 + p2m + p2m+1.

• Constraint (13) simply represents the initial assumption p2m+1 ≥ p1 − pm.

• Constraints (14)–(19) state that the considered relevant jobs are sorted by
non-increasing processing times.

• Constraints (20) indicate that the variables are non-negative.

• Further viable constraints where not necessary to reach the required
result. By setting OPT = 1, the cost function has value 7

6 .



Further cases and subcases for j′ = n = 2m+ 1

By means of further LP models, the following results hold

Proposition

If p2m+1 ≥ p1 − pm and LPT ′ makespan is on M2, ...,Mm, then LPT ′ has a
performance guarantee of 15

13 for m = 3 and 4
3 −

1
2m−1 for m ≥ 4.

Proposition

If p2m+1 < p1 − pm, LPT has a performance guarantee not superior to 15
13 for

m = 3 and 4
3 −

1
2m−1 for m ≥ 4.

Putting things together, the following Theorem holds

Theorem

The proposed algorithm has an approximation ratio not superior to 4
3 −

1
3(m−1)

for m ≥ 3.



Further cases and subcases for j′ = n = 2m+ 1

By means of further LP models, the following results hold

Proposition

If p2m+1 ≥ p1 − pm and LPT ′ makespan is on M2, ...,Mm, then LPT ′ has a
performance guarantee of 15

13 for m = 3 and 4
3 −

1
2m−1 for m ≥ 4.

Proposition

If p2m+1 < p1 − pm, LPT has a performance guarantee not superior to 15
13 for

m = 3 and 4
3 −

1
2m−1 for m ≥ 4.

Putting things together, the following Theorem holds

Theorem

The proposed algorithm has an approximation ratio not superior to 4
3 −

1
3(m−1)

for m ≥ 3.



Further cases and subcases for j′ = n = 2m+ 1

By means of further LP models, the following results hold

Proposition

If p2m+1 ≥ p1 − pm and LPT ′ makespan is on M2, ...,Mm, then LPT ′ has a
performance guarantee of 15

13 for m = 3 and 4
3 −

1
2m−1 for m ≥ 4.

Proposition

If p2m+1 < p1 − pm, LPT has a performance guarantee not superior to 15
13 for

m = 3 and 4
3 −

1
2m−1 for m ≥ 4.

Putting things together, the following Theorem holds

Theorem

The proposed algorithm has an approximation ratio not superior to 4
3 −

1
3(m−1)

for m ≥ 3.



Further cases and subcases for j′ = n = 2m+ 1

By means of further LP models, the following results hold

Proposition

If p2m+1 ≥ p1 − pm and LPT ′ makespan is on M2, ...,Mm, then LPT ′ has a
performance guarantee of 15

13 for m = 3 and 4
3 −

1
2m−1 for m ≥ 4.

Proposition

If p2m+1 < p1 − pm, LPT has a performance guarantee not superior to 15
13 for

m = 3 and 4
3 −

1
2m−1 for m ≥ 4.

Putting things together, the following Theorem holds

Theorem

The proposed algorithm has an approximation ratio not superior to 4
3 −

1
3(m−1)

for m ≥ 3.



LPT , LPT ′ and LPT ′′ w.r.t. m = 2

• For m = 2, 4
3 −

1
3(m−1) = 1, hence a different analysis is required.

• We know that for m = 2 and j′ = n = 4, LPT is optimal and that for
j′ = n ≥ 7 the approx. ratio of LPT is not superior to 9/8 [Coffman and
Sethi 1976].

• We managed to prove that for m = 2 and j′ = n = 6, the approx. ratio of
LPT is not superior to 9/8.

• We managed to prove that for m = 2 and j′ = n = 5, the best sol among
the ones reached by LPT , LPT ′ and LPT ′′ is optimal.

• The case for m = 2 where there are jobs processed after the critical job in
the LPT solution and one of such jobs (say job l) is critical in either
LPT ′ or LPT ′′ schedules keeps the same performance guarantee of
4
3 −

7m−4
3(3m2+m−1) = 4

3 −
10
39 = 14/13 < 9/8 .

• Putting things together, for m = 2, the approx. ratio of the proposed
algorithm is not superior to 9/8.



LPT , LPT ′ and LPT ′′ w.r.t. m = 2

• For m = 2, 4
3 −

1
3(m−1) = 1, hence a different analysis is required.

• We know that for m = 2 and j′ = n = 4, LPT is optimal and that for
j′ = n ≥ 7 the approx. ratio of LPT is not superior to 9/8 [Coffman and
Sethi 1976].

• We managed to prove that for m = 2 and j′ = n = 6, the approx. ratio of
LPT is not superior to 9/8.

• We managed to prove that for m = 2 and j′ = n = 5, the best sol among
the ones reached by LPT , LPT ′ and LPT ′′ is optimal.

• The case for m = 2 where there are jobs processed after the critical job in
the LPT solution and one of such jobs (say job l) is critical in either
LPT ′ or LPT ′′ schedules keeps the same performance guarantee of
4
3 −

7m−4
3(3m2+m−1) = 4

3 −
10
39 = 14/13 < 9/8 .

• Putting things together, for m = 2, the approx. ratio of the proposed
algorithm is not superior to 9/8.



LPT , LPT ′ and LPT ′′ w.r.t. m = 2

• For m = 2, 4
3 −

1
3(m−1) = 1, hence a different analysis is required.

• We know that for m = 2 and j′ = n = 4, LPT is optimal and that for
j′ = n ≥ 7 the approx. ratio of LPT is not superior to 9/8 [Coffman and
Sethi 1976].

• We managed to prove that for m = 2 and j′ = n = 6, the approx. ratio of
LPT is not superior to 9/8.

• We managed to prove that for m = 2 and j′ = n = 5, the best sol among
the ones reached by LPT , LPT ′ and LPT ′′ is optimal.

• The case for m = 2 where there are jobs processed after the critical job in
the LPT solution and one of such jobs (say job l) is critical in either
LPT ′ or LPT ′′ schedules keeps the same performance guarantee of
4
3 −

7m−4
3(3m2+m−1) = 4

3 −
10
39 = 14/13 < 9/8 .

• Putting things together, for m = 2, the approx. ratio of the proposed
algorithm is not superior to 9/8.



LPT , LPT ′ and LPT ′′ w.r.t. m = 2

• For m = 2, 4
3 −

1
3(m−1) = 1, hence a different analysis is required.

• We know that for m = 2 and j′ = n = 4, LPT is optimal and that for
j′ = n ≥ 7 the approx. ratio of LPT is not superior to 9/8 [Coffman and
Sethi 1976].

• We managed to prove that for m = 2 and j′ = n = 6, the approx. ratio of
LPT is not superior to 9/8.

• We managed to prove that for m = 2 and j′ = n = 5, the best sol among
the ones reached by LPT , LPT ′ and LPT ′′ is optimal.

• The case for m = 2 where there are jobs processed after the critical job in
the LPT solution and one of such jobs (say job l) is critical in either
LPT ′ or LPT ′′ schedules keeps the same performance guarantee of
4
3 −

7m−4
3(3m2+m−1) = 4

3 −
10
39 = 14/13 < 9/8 .

• Putting things together, for m = 2, the approx. ratio of the proposed
algorithm is not superior to 9/8.



LPT , LPT ′ and LPT ′′ w.r.t. m = 2

• For m = 2, 4
3 −

1
3(m−1) = 1, hence a different analysis is required.

• We know that for m = 2 and j′ = n = 4, LPT is optimal and that for
j′ = n ≥ 7 the approx. ratio of LPT is not superior to 9/8 [Coffman and
Sethi 1976].

• We managed to prove that for m = 2 and j′ = n = 6, the approx. ratio of
LPT is not superior to 9/8.

• We managed to prove that for m = 2 and j′ = n = 5, the best sol among
the ones reached by LPT , LPT ′ and LPT ′′ is optimal.

• The case for m = 2 where there are jobs processed after the critical job in
the LPT solution and one of such jobs (say job l) is critical in either
LPT ′ or LPT ′′ schedules keeps the same performance guarantee of
4
3 −

7m−4
3(3m2+m−1) = 4

3 −
10
39 = 14/13 < 9/8 .

• Putting things together, for m = 2, the approx. ratio of the proposed
algorithm is not superior to 9/8.



LPT , LPT ′ and LPT ′′ w.r.t. m = 2

• For m = 2, 4
3 −

1
3(m−1) = 1, hence a different analysis is required.

• We know that for m = 2 and j′ = n = 4, LPT is optimal and that for
j′ = n ≥ 7 the approx. ratio of LPT is not superior to 9/8 [Coffman and
Sethi 1976].

• We managed to prove that for m = 2 and j′ = n = 6, the approx. ratio of
LPT is not superior to 9/8.

• We managed to prove that for m = 2 and j′ = n = 5, the best sol among
the ones reached by LPT , LPT ′ and LPT ′′ is optimal.

• The case for m = 2 where there are jobs processed after the critical job in
the LPT solution and one of such jobs (say job l) is critical in either
LPT ′ or LPT ′′ schedules keeps the same performance guarantee of
4
3 −

7m−4
3(3m2+m−1) = 4

3 −
10
39 = 14/13 < 9/8 .

• Putting things together, for m = 2, the approx. ratio of the proposed
algorithm is not superior to 9/8.



From approximation to heuristics

• W.r.t. worst-case analysis, we remarked that LPT ′ was necessary to
improve Graham’s bound for m ≥ 3, while LPT ′′ was necessary for
m ≥ 2.

• Remarkably, for m ≥ 3, the relevant subcase was the one with
p2m+1 ≥ p1 − pm and LPT ′ required to schedule p2m+1 first and then
apply list scheduling first the sorted jobset p1, ..., pm according to LPT
and then to the sorted jobset pm+1, ..., p2m always according to LPT .

• We propose then an alternative approach that splits the sorted job set in
tuples of m consecutive jobs (1, . . . ,m;m+ 1, . . . , 2m; etc.) and sorts the
tuples in non-increasing order of the difference between the largest job
and the smallest job in the tuple. Then a list scheduling is applied to the
set of sorted tuples. We denote this approach as SLACK.



From approximation to heuristics

• W.r.t. worst-case analysis, we remarked that LPT ′ was necessary to
improve Graham’s bound for m ≥ 3, while LPT ′′ was necessary for
m ≥ 2.

• Remarkably, for m ≥ 3, the relevant subcase was the one with
p2m+1 ≥ p1 − pm and LPT ′ required to schedule p2m+1 first and then
apply list scheduling first the sorted jobset p1, ..., pm according to LPT
and then to the sorted jobset pm+1, ..., p2m always according to LPT .

• We propose then an alternative approach that splits the sorted job set in
tuples of m consecutive jobs (1, . . . ,m;m+ 1, . . . , 2m; etc.) and sorts the
tuples in non-increasing order of the difference between the largest job
and the smallest job in the tuple. Then a list scheduling is applied to the
set of sorted tuples. We denote this approach as SLACK.



From approximation to heuristics

• W.r.t. worst-case analysis, we remarked that LPT ′ was necessary to
improve Graham’s bound for m ≥ 3, while LPT ′′ was necessary for
m ≥ 2.

• Remarkably, for m ≥ 3, the relevant subcase was the one with
p2m+1 ≥ p1 − pm and LPT ′ required to schedule p2m+1 first and then
apply list scheduling first the sorted jobset p1, ..., pm according to LPT
and then to the sorted jobset pm+1, ..., p2m always according to LPT .

• We propose then an alternative approach that splits the sorted job set in
tuples of m consecutive jobs (1, . . . ,m;m+ 1, . . . , 2m; etc.) and sorts the
tuples in non-increasing order of the difference between the largest job
and the smallest job in the tuple. Then a list scheduling is applied to the
set of sorted tuples. We denote this approach as SLACK.



From approximation to heuristics

The SLACK heuristic:

Input: Pm||Cmax instance m machines and n jobs with processing times pj
(j = 1, . . . , n).
- Sort items by non-increasing pj .

- Consider
⌈

n
m

⌉
tuples of size m given by jobs 1, . . . ,m;m+ 1, . . . , 2m, etc..

If n is not multiple of m, add dummy jobs with null proc. time in the last tuple.
- For each tuple, compute the associated slack, namely
p1 − pm, p(m+1) − p2m, . . . , p(n−m+1) − pn.
- Sort tuples by non-increasing slack and then fill a list of consecutive jobs in
the sorted tuples.
- Apply List Scheduling to this job ordering and return the solution.

Since the construction and sorting of the tuples can be performed in
O(m logm), the running time of SLACK is O(n log n) due to the initial jobs
LPT sorting.



From approximation to heuristics

The SLACK heuristic:

Input: Pm||Cmax instance m machines and n jobs with processing times pj
(j = 1, . . . , n).
- Sort items by non-increasing pj .

- Consider
⌈

n
m

⌉
tuples of size m given by jobs 1, . . . ,m;m+ 1, . . . , 2m, etc..

If n is not multiple of m, add dummy jobs with null proc. time in the last tuple.
- For each tuple, compute the associated slack, namely
p1 − pm, p(m+1) − p2m, . . . , p(n−m+1) − pn.
- Sort tuples by non-increasing slack and then fill a list of consecutive jobs in
the sorted tuples.
- Apply List Scheduling to this job ordering and return the solution.

Since the construction and sorting of the tuples can be performed in
O(m logm), the running time of SLACK is O(n log n) due to the initial jobs
LPT sorting.



Computational testing

We compared SLACK to LPT on benchmark literature instances (Iori,
Martello 2008)

• Two classical classes of instances from literature are considered: uniform
instances (França et al. 1994) and non-uniform instances (Frangioni et
al. 2004).

• In uniform instances the processing times are integer uniformly
distributed in the range [a, b]. In non-uniform instances, 98% of the
processing times are integer uniformly distributed in [0.9(b− a), b] while
the remaining ones are uniformly distributed in [a, 0.2(b− a)]. For both
classes, we have a = 1; b = 100, 1000, 10000.

• For each class, the following values were considered for the number of
machines and jobs: m = 5, 10, 25 and n = 10, 50, 100, 500, 1000.

• For each pair (m,n) with m < n, 10 instances were generated for a total
of 780 instances.



Computational testing

We compared SLACK to LPT on benchmark literature instances (Iori,
Martello 2008)

• Two classical classes of instances from literature are considered: uniform
instances (França et al. 1994) and non-uniform instances (Frangioni et
al. 2004).

• In uniform instances the processing times are integer uniformly
distributed in the range [a, b]. In non-uniform instances, 98% of the
processing times are integer uniformly distributed in [0.9(b− a), b] while
the remaining ones are uniformly distributed in [a, 0.2(b− a)]. For both
classes, we have a = 1; b = 100, 1000, 10000.

• For each class, the following values were considered for the number of
machines and jobs: m = 5, 10, 25 and n = 10, 50, 100, 500, 1000.

• For each pair (m,n) with m < n, 10 instances were generated for a total
of 780 instances.



Computational testing

We compared SLACK to LPT on benchmark literature instances (Iori,
Martello 2008)

• Two classical classes of instances from literature are considered: uniform
instances (França et al. 1994) and non-uniform instances (Frangioni et
al. 2004).

• In uniform instances the processing times are integer uniformly
distributed in the range [a, b]. In non-uniform instances, 98% of the
processing times are integer uniformly distributed in [0.9(b− a), b] while
the remaining ones are uniformly distributed in [a, 0.2(b− a)]. For both
classes, we have a = 1; b = 100, 1000, 10000.

• For each class, the following values were considered for the number of
machines and jobs: m = 5, 10, 25 and n = 10, 50, 100, 500, 1000.

• For each pair (m,n) with m < n, 10 instances were generated for a total
of 780 instances.



Computational testing

We compared SLACK to LPT on benchmark literature instances (Iori,
Martello 2008)

• Two classical classes of instances from literature are considered: uniform
instances (França et al. 1994) and non-uniform instances (Frangioni et
al. 2004).

• In uniform instances the processing times are integer uniformly
distributed in the range [a, b]. In non-uniform instances, 98% of the
processing times are integer uniformly distributed in [0.9(b− a), b] while
the remaining ones are uniformly distributed in [a, 0.2(b− a)]. For both
classes, we have a = 1; b = 100, 1000, 10000.

• For each class, the following values were considered for the number of
machines and jobs: m = 5, 10, 25 and n = 10, 50, 100, 500, 1000.

• For each pair (m,n) with m < n, 10 instances were generated for a total
of 780 instances.



Computational testing

We compared SLACK to LPT on benchmark literature instances (Iori,
Martello 2008)

• Two classical classes of instances from literature are considered: uniform
instances (França et al. 1994) and non-uniform instances (Frangioni et
al. 2004).

• In uniform instances the processing times are integer uniformly
distributed in the range [a, b]. In non-uniform instances, 98% of the
processing times are integer uniformly distributed in [0.9(b− a), b] while
the remaining ones are uniformly distributed in [a, 0.2(b− a)]. For both
classes, we have a = 1; b = 100, 1000, 10000.

• For each class, the following values were considered for the number of
machines and jobs: m = 5, 10, 25 and n = 10, 50, 100, 500, 1000.

• For each pair (m,n) with m < n, 10 instances were generated for a total
of 780 instances.



Computational testing

SLACK LPT
wins draws wins

[a, b] m Instances # (%) # (%) # (%)
5 50 31 (62.0) 16 (32.0) 3 (6.0)

1-100 10 40 32 (80.0) 8 (20.0) 0 (0.0)
25 40 23 (57.5) 17 (42.5) 0 (0.0)
5 50 39 (78.0) 10 (20.0) 1 (2.0)

1-1000 10 40 40 (100.0) 0 (0.0) 0 (0.0)
25 40 27 (67.5) 12 (30.0) 1 (2.5)
5 50 39 (78.0) 10 (20.0) 1 (2.0)

1-10000 10 40 40 (100.0) 0 (0.0) 0 (0.0)
25 40 28 (70.0) 10 (25.0) 2 (5.0)

Table: Pm||Cmax non uniform instances.



Computational testing

SLACK LPT
wins draws wins

[a, b] m Instances # (%) # (%) # (%)
5 50 12 (24.0) 37 (74.0) 1 (2.0)

1-100 10 40 14 (35.0) 20 (50.0) 6 (15.0)
25 40 10 (25.0) 29 (72.5) 1 (2.5)
5 50 32 (64.0) 15 (30.0) 3 (6.0)

1-1000 10 40 27 (67.5) 5 (12.5) 8 (20.0)
25 40 24 (60.0) 12 (30.0) 4 (10.0)
5 50 36 (72.0) 12 (24.0) 2 (4.0)

1-10000 10 40 37 (92.5) 0 (0.0) 3 (7.5)
25 40 22 (55.0) 11 (27.5) 7 (17.5)

Table: Pm||Cmax uniform instances.



Computational testing

• SLACK shows up to be clearly superior to LPT : on 780 benchmark
literature instances, SLACK wins 513 times, ties 224 times and loses 43
times only.

• If LPT ′′ is added to SLACK, then SLACK+LPT ′′ compared to LPT
wins 529 times, ties 213 times and loses 38 times only.



Computational testing

• SLACK shows up to be clearly superior to LPT : on 780 benchmark
literature instances, SLACK wins 513 times, ties 224 times and loses 43
times only.

• If LPT ′′ is added to SLACK, then SLACK+LPT ′′ compared to LPT
wins 529 times, ties 213 times and loses 38 times only.


	Introduction
	LPT rule
	LPT revisited
	Improving the LPT bound
	From approximation to heuristics
	Computational testing

