The two-machine flowshop total completion time problem: A branch-and-bound based on network-flow formulation

Boris Detienne ${ }^{1}$, Ruslan Sadykov ${ }^{1}$, Shunji Tanaka ${ }^{2}$ 1 : Team Inria RealOpt, University of Bordeaux, France 2 : Department of Electrical Engineering, Kyoto University, Japan

Journées GOThA/Bermudes

26-27 septembre 2017

Outline

(1) Introduction

- Problem description
- Literature
- Contribution
(2) Lower bounds
- Network flow formulation
- Extended network flow formulation
(3) Branch-and-bound
(4) Numerical results
(1) Introduction
- Problem description
- Literature
- Contribution

2 Lower bounds
(3) Branch-and-bound

4 Numerical results

Two-machine flow-shop problem $F 2\left|S T_{S I}\right| \sum C_{i}$

Input data: A set I of n jobs composed of 2 operations

- The first operation is processed on machine 1 , the second on machine 2
- For all $i \in I, s_{i}^{2}$ is the sequence-independent setup time on machine 2
- Assumption: data are integer and deterministic

Constraints

- Each machine can process only one operation at a time
- Operations of a same job cannot be processed simultaneously

Objective

Find a schedule that minimizes the sum of the completion times of the jobs on the second machine.

Example

i	1	2	3
p_{i}^{1}	3	7	2
p_{i}^{2}	3	4	3
s_{i}^{2}	2	2	3

Example

i	1	2	3
p_{i}^{1}	3	7	2
p_{i}^{2}	3	4	3
s_{i}^{2}	2	2	3

Example

i	1	2	3
p_{i}^{1}	3	7	2
p_{i}^{2}	3	4	3
s_{i}^{2}	2	2	3

Example

i	1	2	3
p_{i}^{1}	3	7	2
p_{i}^{2}	3	4	3
s_{i}^{2}	2	2	3

Example

i	1	2	3
p_{i}^{1}	3	7	2
p_{i}^{2}	3	4	3
s_{i}^{2}	2	2	3

Cost of the schedule: $6+14+20=40$

Properties of the problem

Complexity

Strongly $N P$-hard [Conway et al., 1967]

Dominating solutions

There is a least one optimal schedule that is:

- active (operations are performed as soon as possible, no unforced idle time)
- such that the sequences of the jobs on both machines are the same (permutation schedule) [Conway et al., 1967, Allahverdi et al., 1999]
\rightarrow The problem comes to find one optimal sequence of jobs.

Literature

Lower bounds and exact algorithms

- L.B.: Single machine problems
[Ignall and Schrage, 1965], [Ahmadi and Bagchi, 1990], [Della Croce et al., 1996], [Allahverdi, 2000]
Branch-and-bound, up to 10, 15 and 30 jobs ($p_{i} \leq 20$), 20 jobs ($p_{i} \leq 100$)
- L.B.: Lagrangian relaxation of precedence constraints [van de Velde, 1990], [Della Croce et al, 2002], [Gharbi et al., 2013]
Branch-and-bound, up to 20 and 45 jobs ($p_{i} \leq 10$)
- L.B.: linear relaxation of a positional/assignment model
[Akkan and Karabati, 2004], [Hoogeven et al., 2006], [Haouari and Kharbeche, 2013], [Gharbi et al., 2013] : 35 jobs ($p_{i} \leq 100$)
- L.B.: Lagrangian relaxation of the job cardinality ctr., flow model [Akkan and Karabati, 2004]
Branch-and-bound, up to 60 jobs ($p_{i} \leq 10$), 45 jobs ($p_{i} \leq 100$)

Contribution

Branch-and-bound based on the network flow model of [Akkan and Karabati, 2004]

Improvements

Stronger lower bound by using a larger size network

- Advantages
- Stronger Lagrangian relaxation bound
- Allows integration of dominance rules inside the network
- Disadvantages
- (Too) high memory and CPU time requirements
\rightarrow Reduction of the size of the network using Lagrangian cost variable fixing

Extension to sequence-independent setup times

(1) Introduction

(2) Lower bounds

- Network flow formulation
- Extended network flow formulation
(3) Branch-and-bound

4 Numerical results

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

- $C_{[k]}^{m}$: completion time of the job in position k on machine m
- L_{k}^{c} : time lag elapsed between the completion of the job in position k on machines 1 and 2

$$
L_{k}^{c}=C_{[k]}^{2}-C_{[k]}^{1}=\max \left\{0, L_{k-1}^{c}+s_{[k]}^{2}-p_{[k]}^{1}\right\}+p_{[k]}^{2}
$$

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

- $C_{[k]}^{m}$: completion time of the job in position k on machine m
- L_{k}^{c} : time lag elapsed between the completion of the job in position k on machines 1 and 2

$$
L_{k}^{c}=C_{[k]}^{2}-C_{[k]}^{1}=\max \left\{0, L_{k-1}^{c}+s_{[k]}^{2}-p_{[k]}^{1}\right\}+p_{[k]}^{2}
$$

$$
L_{2}^{c}+s_{[3]}^{2}>p_{[3]}^{1} \rightarrow \underset{\longleftrightarrow}{L_{3}^{c}=L_{2}^{c}}+s_{[3]}^{2}-p_{[3]}^{1}+p_{[3]}^{2}
$$

Lag-based models

Formulating the objective function

Minimizing the sum of completion times:

$$
\begin{aligned}
\sum_{k=1}^{n} C_{[k]}^{2} & =\sum_{k=1}^{n}\left(C_{[k]}^{1}+L_{k}^{c}\right) \\
& =\sum_{k=1}^{n}\left(\sum_{r=1}^{k} p_{[r]}^{1}+L_{k}^{c}\right) \\
& =\sum_{k=1}^{n}\left((n-k+1) p_{[k]}^{1}+L_{k}^{c}\right)
\end{aligned}
$$

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

$L_{k}^{c}=C_{[k]}^{2}-C_{[k]}^{1}$: time lag elapsed between the completion of the job in position k on machine 1 and on machine 2

Total completion time - Similar to $1 \| \sum_{i} C_{i}$

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

$L_{k}^{c}=C_{[k]}^{2}-C_{[k]}^{1}$: time lag elapsed between the completion of the job in position k on machine 1 and on machine 2

Total completion time - Similar to $1 \| \sum_{i} C_{i}$

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

$L_{k}^{c}=C_{[k]}^{2}-C_{[k]}^{1}$: time lag elapsed between the completion of the job in position k on machine 1 and on machine 2

Total completion time - Similar to $1 \| \sum_{i} C_{i}$

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

$L_{k}^{c}=C_{[k]}^{2}-C_{[k]}^{1}$: time lag elapsed between the completion of the job in position k on machine 1 and on machine 2

Total completion time - Similar to $1 \| \sum_{i} C_{i}$

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

$L_{k}^{c}=C_{[k]}^{2}-C_{[k]}^{1}$: time lag elapsed between the completion of the job in position k on machine 1 and on machine 2

Total completion time - Similar to $1 \| \sum_{i} C_{i}$

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

$L_{k}^{c}=C_{[k]}^{2}-C_{[k]}^{1}$: time lag elapsed between the completion of the job in position k on machine 1 and on machine 2

Total completion time

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

Recursive formula for lag: $L_{k}^{c}=\max \left\{0, L_{k-1}^{c}+s_{[k]}^{2}-p_{[k]}^{1}\right\}+p_{[k]}^{2}$

Total completion time

Network flow formulation [Akkan et Karabati, 2004]

Lag-based models
Cost: $\sum_{k=1}^{n} C_{[k]}^{2}=\sum_{k=1}^{n}\left((n-k+1) p_{[k]}^{1}+L_{k}^{c}\right)$
The contribution of a job to the objective function only depends on:

- Its position in the sequence
- Its lag, which is directly deduced from the lag of the preceding job

Structure of the network

- One node \equiv a pair (position, lag)
- One arc \equiv the processing of a job
- initial node determines the position
- terminal node determines the lag
\rightarrow The cost of an arc is the corresponding contribution to the objective function

Network flow formulation [Akkan et Karabati, 2004]: G_{1}

Shortest path + Each job is processed exactly once

Network flow formulation [Akkan et Karabati, 2004]: G_{1}

Shortest path + Each job is processed once \rightarrow L.B. by Lagrangian relaxation

Network flow formulation [Akkan et Karabati, 2004]: G_{1}

Disadvantage: many infeasible paths \rightarrow "weak" lower bound

Extended network flow formulation: G_{2}

Structure of the network

- One node \equiv a triplet (position, lag, job)
- One arc \equiv the processing of a job
- initial node determines the position and the job
- terminal node determines the lag and the next job
\rightarrow The cost of an arc is the corresponding contribution to the objective function

Extended network G_{2}

$k=3$
$k=4$

Extended network G_{2} - Example of reduction

Jobs cannot be processed twice consecutively

Extended network G_{2} - Example of reduction

$k=3$
$k=4$

Extended network G_{2} - Example of reduction

$$
k=3
$$

$$
\text { If } \begin{aligned}
& p_{i}^{1}+s_{j}^{2} \leq p_{j}^{1}+s_{i}^{2}, p_{i}^{2}+s_{i}^{2} \leq p_{j}^{2}+s_{j}^{2} \text {, and } p_{j}^{2} \leq p_{i}^{2} \text {, then } i \rightarrow j \\
& \Rightarrow J_{3} \rightarrow J_{2} \\
& \text { [Allahverdi, 2000] }
\end{aligned}
$$

Extended network G_{2} - Example of reduction

$k=3$
$k=4$

Extended network G_{2} - Example of reduction

Given a position k, a lag ℓ and a sub-sequence σ :

- $f(k, \ell, \sigma)$: cost of scheduling σ at (k, ℓ)
- L(k, $\ell, \sigma)$: lag of the last job of σ scheduled at (k, ℓ)

Dominance

Sub-sequence σ is dominated at (k, ℓ) by sub-sequence σ^{\prime} if:

- The set of jobs in σ and σ^{\prime} is the same
- $f(k, \ell, \sigma)>f\left(k, \ell, \sigma^{\prime}\right)$

The partial schedule up to the end of σ^{\prime} will be less costly

- $L(k, \ell, \sigma) \geq L\left(k, \ell, \sigma^{\prime}\right)$

The partial schedule after σ^{\prime} will not be more costly

Extended network G_{2} - Example of reduction

Example: $|\sigma|=2$ allows us to remove some arcs

Lagrangian cost variable fixing

Additional input data

An upper bound $U B$ of the optimum is known

Principle

- Assume that one dominant optimal solution satisfies hypothesis h The optimal path goes through a given arc
- Compute a (Lagrangian) lower bound $L B_{h}$ under h
- If $L B_{h}>U B$, then h is not satisfied in any optimal dominant solution
The arc can be removed from the graph

Lagrangian cost variable fixing (1)

Removing arcs from the network Hypothesis: the path goes through e [lbaraki and Nakamura, 1994]

Given Lagrangian multipliers π

$$
\begin{gathered}
S P(e)=S P(\emptyset, v)+\operatorname{cost}(e)+S P(w, *) \\
\text { If } S P(e)-\sum_{j} \pi_{j}>U B
\end{gathered}
$$

then e is part of no optimal solution.
Computing $S P(e)$ for all $e \in E$ is done in $O(|E|)$-time

Lagrangian cost variable fixing (2)

Removing arcs from the network
[Detienne et al., 2012]
Given Lagrangian multipliers π

then e is part of no optimal solution.
Computing $S P_{i}(e)$ for all $e \in E$ and $i \in I$ is done in $O(n|E|)$-time

Lagrangian cost variable fixing (2)

Removing arcs from the network
[Detienne et al., 2012]
Given Lagrangian multipliers π and a job J_{i}

$$
\begin{array}{r}
S P_{i}(w, *) \\
S P_{\neg i}(w, *)
\end{array}
$$

then e is part of no optimal solution.
Computing $S P_{i}(e)$ for all $e \in E$ and $i \in I$ is done in $O(n|E|)$-time

Lower bound improvement using local dominance

Inspection of optimal solutions of Lagrangian subproblems: dominated or infeasible 3 job-paths are removed from the graph

(2) Lower bounds
(3) Branch-and-bound

4 Numerical results

Preprocessing

Initial upper bound

A good feasible solution is obtained by a local search procedure Dynasearch [Tanaka, 2010]

Pre-computation of lower bounds

- Construction of network G_{1}
- Lagrangian cost variable fixing (subgradient procedure)
- Construction of the extended network G_{2} from G_{1}
- Lagrangian cost variable fixing (subgradient procedure)
- For the best Lagrangian multipliers, $S P_{i}(v, *)$ and $S P_{\neg i}(v, *)$ are stored for each $i \in I$ and $v \in V$

Branching scheme

Solution space explored

- Feasible sequences of jobs \equiv Feasible constrained paths in G_{2}
- Depth-First Search, starting from start node \emptyset

Branching

Current sequence σ (三 path) is extended with job J_{i} iff:

- There is a corresponding arc in G_{2}
- All predecessors of J_{i} are in σ and J_{i} is not in σ
- Predictive memorization?: The sequence of the last 5 jobs obtained would not be dominated by one of its permutations
- Static node memorization: The sequence is not dominated by a previously explored sequence [Baptiste et al., 2004], [T’Kindt et al., 2004], [Kao et al., 2008]

Lower bound for $\sigma \equiv$ path ending at v in G_{2}

Lower bound coming from jobs not sequenced yet

$$
L B_{1}=\operatorname{cost}(\sigma)+\max _{i \notin \sigma} S P_{i}(v, *)-\sum_{i \notin \sigma} \pi_{i}
$$

Lower bound coming from sequenced jobs

$$
L B_{2}=\operatorname{cost}(\sigma)+\max _{i \in \sigma} S P_{\neg i}(v, *)-\sum_{i \notin \sigma} \pi_{i}
$$

Computing $\max \left\{L B_{1}, L B_{2}\right\}$ is done in $\mathscr{O}(n)$-time.

Tentative upper bound

Weakness of the approach

If the initial upper bound is too large, variable fixing is not efficient.

Overall procedure

(1) Build and filter G_{1} using the initial upper bound (dynasearch)
(2) If G_{1} is sufficiently small, build and filter G_{2} from G_{1}, run the Branch-and-Bound, STOP
(3) Build and filter G_{2} from G_{1} using a tentative upper bound
(4) Run the Branch-and-Bound
(5) If a feasible solution is found, it is optimal, STOP
(0) Otherwise, increase the tentative upper bound and go to 3

2) Lower bounds

(3) Branch-and-bound
(4) Numerical results

Setup

Coded in C++ (MS VS 2012)
MS Windows 8 laptop with 16GB RAM and Intel Core i7 @2.7GHz
Instances of $F_{2} \| \sum C_{i}$

- Randomly generated [Akkan and Karabati, 2004], [Haouari and Kharbeche 2013]
- Up to 140 jobs, p_{i}^{1} and p_{i}^{2} are drawn from $\mathscr{U}[1,100]$

Instances of $F_{2}| | \sum C_{i}$

- Subset of the testbed of [Gharbi et al., 2013]
- Up to 100 jobs, p_{i}^{1}, p_{i}^{2} and s_{i}^{2} are drawn from $\mathscr{U}[1,100]$

Size of the networks - With initial upper bound

Number of nodes in G_{2} (in thousands)									
Duration	$\mathrm{n}=40$	$\mathrm{n}=60$	$\mathrm{n}=80$	$\mathrm{n}=100$	$\mathrm{n}=60$	$\mathrm{n}=70$	$\mathrm{n}=80$	$\mathrm{n}=100$	
[1-10]	2.3	7.8	17.0	35.8					
[1-100]	26.5	92.7	212.4	391.3	246.7	426.9	608.4	1234.1	
Number of arcs in G_{2} (in thousands)									
	$F 2 \\| \sum C_{i}$				$F 2\left\|S T_{s i}\right\| \sum C_{i}$				
Duration	$\mathrm{n}=40$	$\mathrm{n}=60$	$\mathrm{n}=80$	$\mathrm{n}=100$	$\mathrm{n}=60$	$\mathrm{n}=70$	$\mathrm{n}=80$	$\mathrm{n}=100$	
[1-10]	12.9	68.2	217.6	642.7					
[1-100]	164.2	937.0	2925.4	6431.4	3818.3	8224.6	13550.5	35554.8	
Number of nodes in G_{2} after filtering (in thousands)									
	$F 2 \\| \sum C_{i}$				$F 2\left\|S T_{s i}\right\| \sum C_{i}$				
Duration	$\mathrm{n}=40$	$\mathrm{n}=60$	$\mathrm{n}=80$	$\mathrm{n}=100$	$\mathrm{n}=60$	$\mathrm{n}=70$	$\mathrm{n}=80$	$\mathrm{n}=100$	
[1-10]	0.4	2.2	6.6	13.0					
[1-100]	5.2	35.5	92.5	166.2	163.7	284.8	396.8	766.3	
Number of arcs in G_{2} after filtering (in thousands)									
			$\sum C_{i}$			$F 2$	$\mid \sum C_{i}$		
Duration	$\mathrm{n}=40$	$\mathrm{n}=60$	$\mathrm{n}=80$	$\mathrm{n}=100$	$\mathrm{n}=60$	$\mathrm{n}=70$	$\mathrm{n}=80$	$\mathrm{n}=100$	
[1-10]	0.8	7.6	38.6	99.2					
[1-100]	16.4	170.7	639.0	1465.4	1866.5	4236.0	6931.7	18544.7	

Size of the networks - With tentative upper bound

For problem $F 2\left|S T_{S I}\right| \sum C_{i}$, using the best feasible tentative upper
bound

Number of nodes in G_{2} after filtering (in thousands)							
Initial upper bound				Best feasible tentative upper bound			
$\mathrm{n}=60$	$\mathrm{n}=70$	$\mathrm{n}=80$	$\mathrm{n}=100$	$\mathrm{n}=60$	$\mathrm{n}=70$	$\mathrm{n}=80$	$\mathrm{n}=100$
163.7	284.8	396.8	766.3	63.1	88.4	135.1	237.1
Number of arcs in G_{2} after filtering (in thousands)							
Initial upper bound				Best feasible tentative upper bound			
$\mathrm{n}=60$	$\mathrm{n}=70$	$\mathrm{n}=80$	$\mathrm{n}=100$	$\mathrm{n}=60$	$\mathrm{n}=70$	$\mathrm{n}=80$	$\mathrm{n}=100$
1866.5	4236.0	6931.7	18544.7	344.1	544.5	1013.3	2237.8

No setup times - $F_{2} \| \sum C_{i}$

Results for 100-job instances (40 instances)

- Avg. time: 216 s., Max. time: 602 s.
- Tentative upper bound is useless

Root gap $\approx 7 \times 10^{-4}$

- Variable fixing reduces the number of arcs by a factor 5

Avg.: $\approx 166 \mathrm{~K}$ nodes, $\approx 1.4 M$ arcs, Max.: 239 K nodes, 2.9 M arcs

Results for 140-job instances (40 instances)

- Avg. time: 752 s., Max. time: 3006 s.
- Tentative upper bound is useless
- Small processing times: $18 / 20$ solved in 1000 s.
- Large processing times: $12 / 20$ solved in 1000 s.

Sequence-independent setup times - $F_{2}\left|S T_{S I}\right| \sum C_{i}$

Results for 100- job instances (200 instances)

- Avg. time: 935 s., Max. time: 6443 s.
- Tentative upper bound is critical

Reduces the number of arcs from $18.5 M$ to $2.2 M$ at the root node

- Lagrangian Variable fixing + Tentative upper bound reduce the number of arcs by a factor 17
Avg.: $\approx 237 \mathrm{~K}$ nodes, $\approx 2.2 M$ arcs, Max.: 440 K nodes, 4.9 M arcs
- Solves $145 / 200$ instances in 1000 s .

Impact of static node memorization

When the rule is disabled

Problem $F_{2} \| \sum C_{i}, 100$-job instances

- Large processing times: $38 / 40$ solved in 1000 s.
- Max. solving time: 602s. $\rightarrow 7700$ s.
- Average computing time multiplied by a factor 4
- Average number of $\mathrm{B} \& B$ nodes increased by a factor $45: 3.9 \mathrm{M} \rightarrow$ 179M
- Maximum number of B\&B nodes: 2.7 billions

Conclusion

Contributions

- New lower bound for $F 2 \| \sum C_{i}$ and $F 2\left|S T_{S I}\right| \sum C_{i}$
- Efficient management of the size of the extended network
- Dominance rules are embedded in the structure of the network
- The lower bound is used with success in an exact solving approach
- All 100-job instances of our test bed are solved in less than two hours 98% are solved in less than one hour

Future directions

- Use Successive Sublimation Dynamic Programming instead of Branch-and-Bound
- Adapt for other min-sum objective functions?
- Adapt for more than two machines permutation flowshop?

Thank you for your attention

Network flow formulation [Akkan et Karabati, 2004]: G_{1}

- V_{1}, A_{1} : sets of nodes and arcs
- $x_{v, w, j}$: amount of flow on the arc representing j between nodes v and w

$$
\begin{array}{lr}
\min \sum_{(v, w, j) \in A_{1}} c_{v, w, j} x_{v, w, j} \\
\text { s.t. } \sum_{(v, w, j) \in A_{1}} x_{v, w, j}=\sum_{(w, v, j) \in A_{1}} x_{w, v, j} \quad \forall v \in V_{1}-\{(0,0),(n+1,0)\} \\
\sum_{(v, w, j) \in A_{1}} x_{v, w, j}=1 & \forall j=1, \ldots, n \\
\sum_{(0, w, j) \in A_{1}} x_{0, w, j}=1 & \\
x_{v, w, j} \in\{0,1\} & \forall(v, w, j) \in E_{1}
\end{array}
$$

Lower bound by Lagrangian relaxation

- V_{1}, A_{1} : sets of nodes and arcs
- $x_{v, w, j}$: amount of flow on the arc representing j between nodes v and w

$$
\begin{aligned}
& L(\pi)= \min \\
& \quad \sum_{(v, w, j) \in A_{1}} c_{v, w, j} x_{v, w, j}+\sum_{j=1}^{n} \pi_{j}\left(\sum_{(v, w):(v, w, j) \in A_{1}} x_{v, w, j}-1\right) \\
& \text { s.t. } \sum_{(v, w, j) \in A_{1}} x_{v, w, j}=\sum_{(w, v, j) \in A_{1}} x_{w, v, j} \quad \forall v \in V_{1}-\{(0,0),(n+1,0)\} \\
& \sum_{(w, w, j) \in A_{1}} x_{v, w, j}=1 \quad \forall j=1, \ldots, n \\
& \sum_{(0, w, j) \in A_{1}} x_{0, w, j}=1 \\
& x_{v, w, j} \in\{0,1\} \quad \forall(v, w, j) \in A_{1}
\end{aligned}
$$

Lower bound by Lagrangian relaxation

- V_{1}, A_{1} : sets of nodes and arcs
- $x_{v, w, j}$: amount of flow on the arc representing j between nodes v and w

$$
\begin{aligned}
L(\pi)=\min & \sum_{(v, w, j) \in A_{1}}\left(c_{v, w, j}+\pi_{j}\right) x_{v, w, j}-\sum_{j=1}^{n} \pi_{j} \\
& \begin{array}{l}
\text { s.t. } \\
\sum_{(v, w, j) \in A_{1}} x_{v, w, j}=\sum_{(w, v, j) \in A_{1}} x_{w, v, j} \quad \forall v \in V_{1}-\{(0,0),(n+1,0)\} \\
\\
\sum_{(0, w, j) \in A_{1}} x_{v, w, j}=1 \\
\\
\sum_{(0, w, j) \in A_{1}} x_{0, w, j}=1 \\
x_{v, w, j} \in\{0,1\}
\end{array} \quad \forall j=1, \ldots, n \\
& \forall(v, w, j) \in A_{1}
\end{aligned}
$$

Subproblem: shortest path in the network

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

- $C_{[k]}^{m}$: completion time of the job in position k on machine m
- L_{k}^{c} : time lag elapsed between the completion of the job in position k on machines 1 and 2

$$
L_{k}^{c}=C_{[k]}^{2}-C_{[k]}^{1}=\max \left\{0, L_{k-1}^{c}+s_{[k]}^{2}-p_{[k]}^{1}\right\}+p_{[k]}^{2}
$$

Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

- $C_{[k]}^{m}$: completion time of the job in position k on machine m
- L_{k}^{c} : time lag elapsed between the completion of the job in position k on machines 1 and 2

$$
L_{k}^{c}=C_{[k]}^{2}-C_{[k]}^{1}=\max \left\{0, L_{k-1}^{c}+s_{[k]}^{2}-p_{[k]}^{1}\right\}+p_{[k]}^{2}
$$

$$
L_{2}^{c}+s_{[3]}^{2}>p_{[3]}^{1} \rightarrow \underset{\longleftrightarrow}{L_{3}^{c}=L_{2}^{c}}+s_{[3]}^{2}-p_{[3]}^{1}+p_{[3]}^{2}
$$

Lag-based models

Formulating the objective function

Minimizing the sum of completion times:

$$
\begin{aligned}
\sum_{k=1}^{n} C_{[k]}^{2} & =\sum_{k=1}^{n}\left(C_{[k]}^{1}+L_{k}^{c}\right) \\
& =\sum_{k=1}^{n}\left(\sum_{r=1}^{k} p_{[r]}^{1}+L_{k}^{c}\right) \\
& =\sum_{k=1}^{n}\left((n-k+1) p_{[k]}^{1}+L_{k}^{c}\right)
\end{aligned}
$$

Example

$$
p_{1}=(3,5) ; \quad p_{2}=(7,4) ; \quad p_{3}=(2,7)
$$

Cost of the schedule: $(3 \times 3+5)+(7 \times 2+4)+(2 \times 1+9)=43$

Lower bound for $\sigma \equiv$ path ending at v in G_{2}

Lower bound coming from jobs not sequenced yet

$$
L B_{1}=\operatorname{cost}(\sigma)+\max _{i \notin \sigma} S P_{i}(v, *)-\sum_{i \notin \sigma} \pi_{i}
$$

Lower bound coming from sequenced jobs

$$
L B_{2}=\operatorname{cost}(\sigma)+\max _{i \in \sigma} S P_{\neg i}(v, *)-\sum_{i \notin \sigma} \pi_{i}
$$

Computing $\max \left\{L B_{1}, L B_{2}\right\}$ is done in $\mathscr{O}(n)$-time.

